Some Quotient Hopf Algebras of the Dual Steenrod Algebra
نویسنده
چکیده
Fix a prime p, and let A be the polynomial part of the dual Steenrod algebra. The Frobenius map on A induces the Steenrod operation P̃0 on cohomology, and in this paper, we investigate this operation. We point out that if p = 2, then for any element in the cohomology of A, if one applies P̃0 enough times, the resulting element is nilpotent. We conjecture that the same is true at odd primes, and that “enough times” should be “once.” The bulk of the paper is a study of some quotients of A in which the Frobenius is an isomorphism of order n. We show that these quotients are dual to group algebras, the resulting groups are torsion-free, and hence every element in Ext over these quotients is nilpotent. We also try to relate these results to the questions about P̃0. The dual complete Steenrod algebra makes an appearance.
منابع مشابه
Invariant elements in the dual Steenrod algebra
In this paper, we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$, where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$.
متن کاملA note on the new basis in the mod 2 Steenrod algebra
The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations, denoted by $Sq^n$, between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space. Regarding to its vector space structure over $mathbb{Z}_2$, it has many base systems and some of the base systems can also be restricted to its sub algebras. On the contrary, in ...
متن کاملAdjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been st...
متن کاملHopf Algebra Deformations of Binary Polyhedral Groups
We show that semisimple Hopf algebras having a self-dual faithful irreducible comodule of dimension 2 are always obtained as abelian extensions with quotient Z2. We prove that nontrivial Hopf algebras arising in this way can be regarded as deformations of binary polyhedral groups and describe its category of representations. We also prove a strengthening of a result of Nichols and Richmond on c...
متن کاملLots of Hopf Algebras, I
The purpose of this paper is to give definitions of some new Hopf algebras analogous to the mod-p Steenrod algebras. For example, we produce a Hopf algebra over the integers whose reduction mod-p is the mod-p Steenrod algebra. Just for fun, we “quantize” these algebras too! Further study of the examples of this paper will be done in part II. 1 Deformations of Hopf Algebras Suppose that k is a c...
متن کامل